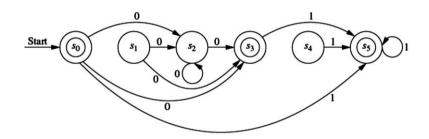

Department of Higher Education University of Computer Studies, Yangon Fourth Year(B.C.Sc. / B.C.Tech.) Final Examination Mathematics of Computing IV (CST-402) September, 2018

Answer ALL questions.


Time allowed : 3 hours.

- 1(a)(i) In codeword Enumeration system, a computer considers a string of decimal digits a valid codeword if it contains an even number of '0' digits. For instance 1230407869 is valid, whereas 120987045608 is not valid. Let a_n be the number of valid n- digit codewords. Find a recurrence relation for a_n .
 - (ii) Find a recurrence relation for the number of ternary strings of length n that do not contain two consecutive 0s.What are the initial conditions and how many ternary strings of length nine do not contain two consecutive 0s?
 - (b) (i) Solve the recurrence relation $a_n = 7a_{n-1} 10a_{n-2}$, $a_0 = 2$, $a_1 = 3$.
 - (ii) Find the closed form for the sequences, $\{a_k\}$ with $a_k = 3k$ and $a_k = 36k + 5$.
- 2(a) Find an explicit formula for the Fibonacci number $f_n = f_{n-1} + f_{n-2}$ with $f_0 = 0$ and $f_1 = 1$.
 - (b) Find the coefficient of x^{10} for the function $(1+x^5 + x^{10} + x^{15} +)$
 - (c) Use generating functions to determine the number of different ways 25 identical apples can be given to 4 students if each student receives at least 3 but no more than 7 apples.
- 3(a) Use generating function to solve the recurrence relation $a_k = 3a_{k-1} + 4^{k-1}$, $a_0 = 1$.
- (b) Let $V = \{S, A, B, a, b\}$ and $T = \{a, b\}$. Find the language generated by the grammar (V, T, S, P) when the set P of productions consists of:
 - (i) $S \rightarrow AB, S \rightarrow AA, A \rightarrow aB, A \rightarrow ab, B \rightarrow b.$
 - (ii) $S \rightarrow aS$, $S \rightarrow bA$, $S \rightarrow b$, $A \rightarrow bA$, $A \rightarrow b$, and $S \rightarrow \lambda$.
- (c) Find a phrase-structure grammar for each of these languages.
 - (i) $\{0^{2n}1^n | n = 0, 1, 2, 3, ...\}$
 - (ii) the set of bit strings that start with 11 and end with one or more 0s
- 4(a) Construct a finite-state machine that delays an input string one bit, giving 1 as the first bit of output, that is, it produces as output the bit string $1x_1x_2 \ldots x_{k-1}$ given the input bit string $x_1x_2 \ldots x_k$.
- (b) Find the output for each of these input strings when given as input to the finite-state machine in given figure.

(i) 0111 (ii) 11011011 (iii) 01010101010 (iv) 10101010 (v) 01101111

- (c) Construct a deterministic finite-state automaton that recognizes the set of bit string: $\{0^n, 0^n 10x | n = 0, 1, 2, ..., and x \text{ is any string}\}.$
- (d) Construct a nondeterministic finite-state automaton that recognizes $\{0^n, 0^n 01, 0^n 011 | n \ge 0\}$
- 5(a) Find a regular grammar that generates the regular set recognized by the nondeterministic finite-state automaton shown in figure.

(b) Construct a Turing machine that computes the function f(n) = n - 2 if $n \ge 2$ and f(n) = 0 for n = 0, 1 for all nonnegative integers n. For n=5, determine the final tape when it halts using this Turing machine. Show in details.
